Nonconvex and Nonsmooth Sparse Optimization via Adaptively Iterative Reweighted Methods
نویسندگان
چکیده
We propose a general formulation of nonconvex and nonsmooth sparse optimization problems with convex set constraint, which can take into account most existing types sparsity-inducing terms, bringing strong applicability to wide range applications. design algorithmic framework iteratively reweighted algorithms for solving the proposed problems, solves sequence weighted regularization adaptively updated weights. First-order optimality condition is derived global convergence results are provided under loose assumptions, making our theoretical practical tool analyzing family various algorithms. The effectiveness efficiency demonstrated in numerical experiments on problems.
منابع مشابه
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tack...
متن کاملBenson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملOn Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision
Natural image statistics indicate that we should use non-convex norms for most regularization tasks in image processing and computer vision. Still, they are rarely used in practice due to the challenge of optimization. Recently, iteratively reweighed `1 minimization (IRL1) has been proposed as a way to tackle a class of non-convex functions by solving a sequence of convex `2-`1 problems. We ext...
متن کاملAsynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
We study stochastic algorithms for solving non-convex optimization problems with a convex yet possibly non-smooth regularizer, which nd wide applications in many practical machine learning applications. However, compared to asynchronous parallel stochastic gradient descent (AsynSGD), an algorithm targeting smooth optimization, the understanding of the behavior of stochastic algorithms for the n...
متن کاملProximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Global Optimization
سال: 2021
ISSN: ['1573-2916', '0925-5001']
DOI: https://doi.org/10.1007/s10898-021-01093-0